Interpreting and communicating LCA results in models with high variability and uncertainty – the wider impact of the AQUAVALENS project

Torres C.M. a, Castells F. a, Figueras, M.J. a

aGrupo d’Anàlisi i Gestió Ambiental (AGA), Departament d’Enginyeria Química, Universitat Rovira i Virgili

bUnitat de Biotòxia / Microbiologia, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili

Address: Av. Països Catalans 26, Tarragona 43007 Phone: +34 977 558553, carmenmaria.torres@urv.cat, http://www.elseq.urv.es/aga/

AQUAVALENS

Funded by the EU

http://aquavalen.org/

1. Introduction

✓ LCA practitioners must face the peculiarities of the analyzed system:

 • data availability
 • uncertainty of the input data
 • resolution of the model
 • necessary assumptions
 • unsettled parameters

✓ In the presented study we analyze the consequences of adopting decisions on the features in the design of the LCA models

2. System features

✓ Novel platforms developed under the AQUAVALENS project for the detection of pathogens in drinking water.

✓ Difficulty for setting a high number of parameters related to platforms manufacturing and protocols and procedures to use them.

✓ The complexities due to the diversity of:

 • Platforms
 • Manufacturers (confidentiality issues)
 • Potential users

3. System characterization

Platform developers

qPCR kits

Online monitoring

4. Carbon footprint calculation

✓ Cradle-to-gate boundaries

✓ Background data Ecoinvent 3.1

✓ IPCC global warming potential

✓ Functional unit:1 analysis (e.g., q-PCR)

AQUAVALENS platforms

Online monitoring

Distribution of the total Carbon Footprint of the online monitoring device. Total Carbon Footprint 87.8 g CO₂-eq/analysis.

qPCR kits

Distribution of the total Carbon Footprint of the qPCR kits: type of input and by stage of the procedure. Total Carbon Footprint 1.18 kg of CO₂-eq/analysis.

AQUAVALENS vs CONVENTIONAL

• The Functional Unit is now the analysis of a set of six species from the three kingdoms in a sample.

• The total scores of CFP are 12.1 and 34.7 kg CO₂-eq/analysis for AQUAVALENS and conventional procedures, respectively, in base case scenario.

• Parametric uncertainty derived from the variation and stochastic errors of the input data is analysed, excluding those that arise from methodological decisions and the use of background data.

• The CFP of conventional methods is significantly higher than AQUAVALENS procedures.

5. Conclusions

✓ Focused on environmental impact minimization

✓ Based on a standardized Life Cycle Assessment (ISO 14040 series)

✓ Input data from real case studies (laboratory materials producers and users) and not purchases

✓ Including all cycle: material production, energy consumption and waste disposal, not only improvements opportunities in specific stages

6. Acknowledgements

✓ European Union’s Seventh Framework Programme, grant agreement no. 311846.

✓ Spanish Ministry of Education and Science, ECO2016-75204-P.